#============================================
# Model using transformed data nodes
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "T", "binorm")
model <- bvl_addNode(model, "VB", "binorm")
model <- bvl_addNode(model, "VC", "binorm")
model <- bvl_addNode(model, "VT", "binorm")
model <- bvl_addNode(model, "AVT", "binorm")
model <- bvl_addNode(model, "Grp1", "trans")
model <- bvl_addNode(model, "Grp2", "trans")
model <- bvl_addArc(model, "AVT", "T", "slope")
model <- bvl_addArc(model, "VT", "T", "slope")
model <- bvl_addArc(model, "Grp1", "T", "slope")
model <- bvl_addArc(model, "Grp2", "T", "slope")
model <- bvl_addArc(model, "VB", "Grp1", "*")
model <- bvl_addArc(model, "VT", "Grp1", "*")
model <- bvl_addArc(model, "VC", "Grp2", "*")
model <- bvl_addArc(model, "VT", "Grp2", "*")
data1 <- read.csv("/Statistics/dataset03/stan/20180224_Legends_345.csv")
model_string <- bvl_model2Stan(model)
cat(model_string)
dat <- with(data1,
list(Nobs = length(T),
T = as.numeric(T),
VB = as.numeric(VB),
VC = as.numeric(VC),
VT = as.numeric(VT),
AVT = as.numeric(AVB)))
options(mc.cores = parallel::detectCores())
# Fit the model
fit <- bvl_modelFit(model, dat, warmup = 2000, iter = 5000, chains = 4, cores = 1)
bvl_trace(fit)
summary(fit)
bvl_plotDensOverlay(fit)
#============================================
# Model using dummy nodes
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "T", "binorm")
model <- bvl_addNode(model, "VB", "binorm")
model <- bvl_addNode(model, "VC", "binorm")
model <- bvl_addNode(model, "VT", "binorm")
model <- bvl_addNode(model, "AVT", "binorm")
model <- bvl_addNode(model, "Grp1", "dummy")
model <- bvl_addNode(model, "Grp2", "dummy")
model <- bvl_addArc(model, "AVT", "T", "slope")
model <- bvl_addArc(model, "Grp2", "T", "+")
model <- bvl_addArc(model, "VB", "Grp1", "slope")
model <- bvl_addArc(model, "VC", "Grp1", "slope")
model <- bvl_addArc(model, "VT", "Grp2", "*")
model <- bvl_addArc(model, "Grp1", "Grp2", "*")
options(mc.cores = parallel::detectCores())
model_string <- bvl_model2Stan(model)
cat(model_string)
# Fit the model
fit <- bvl_modelFit(model, dat, warmup = 2000, iter = 5000, chains = 4, cores = 1)
bvl_trace(fit)
summary(fit)
bvl_plotDensOverlay(fit)
log_lik_1 <- extract_log_lik(fit@stanfit, parameter_name="log_lik_T", merge_chains = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.